FEATURES

± 15 kV ESD protection on output pins 400 Mbps ($\mathbf{2 0 0} \mathbf{~ M H z}$) switching rates
Flow through pinout simplifies PCB layout
300 ps typical differential skew
400 ps maximum differential skew
1.7 ns maximum propagation delay
3.3 V power supply
$\pm 310 \mathrm{mV}$ differential signaling
Low power dissipation (10 mW typical)
Interoperable with existing 5 V LVDS receivers
High impedance on LVDS outputs on power-down
Conforms to TIA/EIA-644 LVDS standards
Industrial operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Available in surface-mount (SOIC) and low profile
TSSOP package

APPLICATIONS

Backplane data transmission

Cable data transmission

Clock distribution

GENERAL DESCRIPTION

The ADN4667 is a quad, CMOS, low voltage differential signaling (LVDS) line driver offering data rates of over $400 \mathrm{Mbps}(200 \mathrm{MHz}$) and ultralow power consumption. It features a flow through pinout for easy PCB layout and separation of input and output signals.

The device accepts low voltage TTL/CMOS logic signals and converts them to a differential current output of typically $\pm 3.1 \mathrm{~mA}$ for driving a transmission medium such as a twisted pair cable. The transmitted signal develops a differential voltage of typically $\pm 310 \mathrm{mV}$ across a termination resistor at the receiving end. This is converted back to a TTL/CMOS logic level by an LVDS receiver, such as the ADN4668.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADN4667 also offers active high and active low enable/ disable inputs (EN and $\overline{\mathrm{EN}}$). These inputs control all four drivers and turn off the current outputs in the disabled state to reduce the quiescent power consumption to typically 10 mW .

The ADN4667 and its companion LVDS receiver, the ADN4668, offer a new solution to high speed, point-to-point data transmission, and a low power alternative to emitter-coupled logic (ECL) or positive emitter-coupled logic (PECL).

Rev. A

ADN4667

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
AC Characteristics 4
Absolute Maximum Ratings 6
REVISION HISTORY
5/08-Rev. 0 to Rev. A
Added 16-Lead SOIC_N Package Universal
Changes to Table 3 6
Changes to Applications Information section 11
Updated Outline Dimensions 11
Changes to Ordering Guide 12
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 11
Enable Inputs 11
Applications Information 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to GND ; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. All typical values are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Conditions/Comments ${ }^{1,2}$
LVDS OUTPUTS (Dout+, Dout-) Differential Output Voltage Change in Magnitude of Vod for Complementary Output States Offset Voltage Change in Magnitude of Vos for Complementary Output States Output High Voltage Output Low Voltage	Vod $\Delta V_{\text {OD }}$ Vos Δ Vos $V_{\text {OH }}$ VoL	$\begin{aligned} & 250 \\ & 1.125 \\ & \\ & 0.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 1 \\ & 1.17 \\ & 1 \\ & 1.33 \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 35 \\ & 1.375 \\ & 25 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \|\mathrm{mV}\| \\ & \mathrm{V} \\ & \|\mathrm{mV}\| \\ & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	See Figure 2 and Figure 4
INPUTS (DiNx, EN, $\overline{E N}$) Input High Voltage Input Low Voltage Input High Current Input Low Current Input Clamp Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{ILL}^{\mathrm{V}_{\mathrm{CL}}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { GND } \\ & -10 \\ & -10 \\ & -1.5 \end{aligned}$	$\begin{aligned} & +2 \\ & +2 \\ & -0.8 \end{aligned}$	$\begin{aligned} & V_{c c} \\ & 0.8 \\ & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}} \text { or } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \text { or } 0.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA} \end{aligned}$
LVDS OUTPUT PROTECTION (Dout+, Dout-) Output Short-Circuit Current ${ }^{3}$ Differential Output Short-Circuit Current ${ }^{3}$	los losd		$\begin{aligned} & -4.2 \\ & -4.2 \end{aligned}$	$\begin{aligned} & -9.0 \\ & -9.0 \\ & \hline \end{aligned}$	mA mA	Enabled, $\mathrm{D}_{\mathrm{INx}}=\mathrm{V}_{\mathrm{cc}}$, $\mathrm{Dout}_{+}=0 \mathrm{~V}$ or $\mathrm{D}_{\text {IN }}=\mathrm{GND}, \mathrm{D}_{\text {out- }}=0 \mathrm{~V}$ Enabled, $\mathrm{V}_{\mathrm{OD}}=0 \mathrm{~V}$
LVDS OUTPUT LEAKAGE (Dout+, Dout-) Power-Off Leakage Output Three-State Current	loff loz	$\begin{aligned} & -20 \\ & -10 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & +20 \\ & +10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	Vout $=0 \mathrm{~V}$ or $3.6 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=0 \mathrm{~V}$ or open $\mathrm{EN}=0.8 \mathrm{~V} \text { and } \overline{\mathrm{EN}}=2.0 \mathrm{~V},$ $V_{\text {out }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{cc}}$
POWER SUPPLY No Load Supply Current, Drivers Enabled Loaded Supply Current, Drivers Enabled No Load Supply Current, Drivers Disabled	Icc Ical Iccz		$\begin{aligned} & 4.0 \\ & 20 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 30 \\ & 6.0 \end{aligned}$	mA mA mA	$\begin{aligned} & D_{I N}=V_{c c} \text { or GND } \\ & R_{L}=100 \Omega \text { all channels, } \\ & D_{I N x}=V_{c c} \text { or GND (all inputs) } \\ & D_{1 N x}=V_{c c} \text { or } G N D, E N=G N D, \\ & E N=V_{c c} \end{aligned}$
ESD PROTECTION Dout , Dout- All Pins Except Dout+, Dout-			$\begin{aligned} & \pm 15 \\ & \pm 4 \end{aligned}$		$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	Human body model Human body model

[^0]
ADN4667

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{C}_{\mathrm{L}}{ }^{1}=15 \mathrm{pF}$ to GND; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. All typical values are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Table 2.

Parameter ${ }^{2}$	Min	Typ	Max	Unit	Conditions/Comments ${ }^{3,4}$
Differential Propagation Delay, High to Low, tphlo	0.5	0.9	1.7	ns	See Figure 3 and Figure 4
Differential Propagation Delay, Low to High, tpLhD	0.5	1.2	1.7	ns	See Figure 3 and Figure 4
Differential Pulse Skew \|t ${ }_{\text {PHLD }}$ - tPLHD , tsKı1 5	0	0.3	0.4	ns	See Figure 3 and Figure 4
Channel-to-Channel Skew, $\mathrm{tsko2}^{6}$	0	0.4	0.5	ns	See Figure 3 and Figure 4
Differential Part-to-Part Skew, tskoz^{7}	0		1.0	ns	See Figure 3 and Figure 4
Differential Part-to-Part Skew, tskD4 ${ }^{8}$	0		1.2	ns	See Figure 3 and Figure 4
Rise Time, t_{R}		0.5	1.5	ns	See Figure 3 and Figure 4
Fall Time, t_{F}		0.5	1.5	ns	See Figure 3 and Figure 4
Disable Time High to Inactive, $\mathrm{t}_{\mathrm{Hzz}}$		2	5	ns	See Figure 5 and Figure 6
Disable Time Low to Inactive, tplz		2	5	ns	See Figure 5 and Figure 6
Enable Time Inactive to High, tpzH		3	7	ns	See Figure 5 and Figure 6
Enable Time Inactive to Low, tpzl		3	7	ns	See Figure 5 and Figure 6
Maximum Operating Frequency, $\mathrm{f}_{\text {MAX }}{ }^{9}$	200	250		MHz	See Figure 5 and Figure 6

${ }^{1} C_{L}$ includes probe and jig capacitance.
${ }^{2} \mathrm{AC}$ parameters are guaranteed by design and characterization.
${ }^{3}$ Generator waveform for all tests unless otherwise specified: $\mathrm{f}=50 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{R}} \leq 1 \mathrm{~ns}$, and $\mathrm{t}_{\mathrm{F}} \leq 1 \mathrm{~ns}$.
${ }^{4}$ All input voltages are for one channel unless otherwise specified. Other inputs are set to GND.
${ }^{5} \mathrm{t}_{\text {SKD } 1}=\left|\mathrm{t}_{\text {PHLD }}-\mathrm{t}_{\text {PLHD }}\right|$ is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.
${ }^{6} \mathrm{t}_{\text {SKD } 2}$ is the differential channel-to-channel skew of any event on the same device.
${ }^{7}$ tskD, , differential part-to-part skew, is defined as the difference between the minimum and maximum specified differential propagation delays. This specification applies to devices at the same $\mathrm{V}_{c c}$ and within $5^{\circ} \mathrm{C}$ of each other within the operating temperature range.
${ }^{8}$ tskD4, part-to-part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperatures and voltage ranges, and across process distribution. $\mathrm{t}_{\text {SKD }}$ is defined as \mid maximum - minimum \mid differential propagation delay.
${ }^{9} \mathrm{f}_{\text {MAX }}$ generator input conditions: $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}<1 \mathrm{~ns}(0 \%$ to $100 \%), 50 \%$ duty cycle, 0 V to 3 V . Output criteria: duty cycle $=45 \%$ to 55%, $\mathrm{V}_{\text {OD }}>250 \mathrm{mV}$, all channels switching.

Test Circuits and Timing Diagrams

Figure 2. Test Circuit for Driver $V_{O D}$ and $V_{O S}$

Figure 3. Test Circuit for Driver Propagation Delay and Transition Time

Figure 4. Driver Propagation Delay and Transition Time Waveforms

Figure 6. Driver Three-State Delay Waveforms

ADN4667

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V cc to GND	-0.3 V to +4V
Input Voltage ($\mathrm{DiNx}^{\text {a }}$) to GND	-0.3 V to $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$
Enable Input Voltage (EN, $\overline{\mathrm{EN}}$) to GND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Output Voltage (Dout+, Dout-) to GND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Short-Circuit Duration (Doutt, Dout-) to GND	Continuous
Industrial Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T, max)	$150^{\circ} \mathrm{C}$
Power Dissipation	$\left(T_{J} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
$\theta_{\text {JA }}$ Thermal Impedance	
TSSOP Package	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$125^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature (10 sec)	$260^{\circ} \mathrm{C}$ max

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 7. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	EN	Active High Enable and Power-Down Input (3 VTTL/CMOS). If $\overline{\mathrm{EN}}$ is held low or open circuit, EN enables the drivers when high and disables the drivers when low.
2	$\mathrm{DiN1}^{1}$	Driver Channel 1 Logic Input.
3	Din2	Driver Channel 2 Logic Input.
4	Vcc	Power Supply Input. These parts can be operated from 3.0 V to 3.6 V . The supply should be decoupled with a $10 \mu \mathrm{~F}$ solid tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
5	GND	Ground Reference Point for All Circuitry on the Part.
6	Din3	Driver Channel 3 Logic Input.
7	DiN4	Driver Channel 4 Logic Input.
8	$\overline{\mathrm{EN}}$	Active Low Enable and Power-Down Input with Pull-Down ($3 \mathrm{VTTL} / \mathrm{CMOS}$). If EN is held high, $\overline{\mathrm{EN}}$ enables the drivers when low or open circuit and disables the drivers and powers down the device when high.
9	Dout4-	Channel 4 Inverting Output Current Driver. When Din4 is high, current flows into Douta-. When Dina is low, current flows out of Douta-.
10	Dout4+	Channel 4 Noninverting Output Current Driver. When $\mathrm{D}_{\mathrm{IN} 4}$ is high, current flows out of $\mathrm{D}_{\text {out4+ }}$. When $\mathrm{D}_{\mathrm{IN} 4}$ is low, current flows into Dout4.
11	Dout3+	Channel 3 Noninverting Output Current Driver. When Dins is high, current flows out of Dout3+. When Dina is low, current flows into Dout3+.
12	Doutz-	Channel 3 Inverting Output Current Driver. When $\mathrm{D}_{\mathrm{I} \times 3}$ is high, current flows into Doutz-. When $\mathrm{D}_{\text {in3 }}$ is low, current flows out of Doutz-.
13	Dout2-	Channel 2 Inverting Output Current Driver. When $\mathrm{D}_{\mathrm{IN} 2}$ is high, current flows into Doutz -. When $\mathrm{D}_{\text {IN2 }}$ is low, current flows out of Dout2-.
14	Dout2+	Channel 2 Noninverting Output Current Driver. When DiN2 is high, current flows out of Dout2+. When DiN2 is low, current flows into Dout2+.
15	Dout1+	Channel 1 Noninverting Output Current Driver. When $\mathrm{D}_{\mathrm{N} 1}$ is high, current flows out of $\mathrm{D}_{\text {out } 1+\text {. When }} \mathrm{D}_{\mathrm{IN} 1}$ is low, current flows into Dout1+.
16	Dout1-	Channel 1 Inverting Output Current Driver. When Din1 is high, current flows into Dout1-. When DiN1 is low, current flows out of Dout1-.

ADN4667

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Output High Voltage vs. Power Supply Voltage

Figure 9. Output Low Voltage vs. Power Supply Voltage

Figure 10. Output Short-Circuit Current vs. Power Supply Voltage

Figure 11. Output Three-State Current vs. Power Supply Voltage

Figure 12. Differential Output Voltage vs. Power Supply Voltage

Figure 13. Differential Output Voltage vs. Load Resistor

Figure 14. Offset Voltage vs. Power Supply Voltage

Figure 15. Power Supply Current vs. Switching Frequency

Figure 16. Power Supply Current vs. Power Supply Voltage

Figure 17. Power Supply Current vs. Ambient Temperature

Figure 18. Differential Propagation Delay vs. Power Supply Voltage

Figure 19. Differential Propagation Delay vs. Ambient Temperature

ADN4667

Figure 20. Differential Skew vs. Power Supply Voltage

Figure 21. Differential Skew vs. Ambient Temperature

Figure 22. Transition Time vs. Power Supply Voltage

Figure 23. Transition Time vs. Ambient Temperature

THEORY OF OPERATION

The ADN4667 is a quad line driver for low voltage differential signaling. It takes a single-ended 3 V logic signal and converts it to a differential current output. The data can then be transmitted for considerable distances, over media such as a twisted pair cable or PCB backplane, to an LVDS receiver like the ADN4668, where it develops a voltage across a terminating resistor, R_{T}. This resistor is chosen to match the characteristic impedance of the medium, typically around 100Ω. The differential voltage is detected by the receiver and converted back into a single-ended logic signal.

When $\mathrm{D}_{\text {IN }}$ is high (Logic 1), current flows out of the Dout+ pin (current source) through R_{T} and back into the Dout- pin (current sink). At the receiver, this current develops a positive differential voltage across R_{T} (with respect to the inverting input) and gives a Logic 1 at the receiver output. When $\mathrm{D}_{\text {INx }}$ is low, Dour+ sinks current and $\mathrm{D}_{\text {out- }}$ sources current; a negative differential voltage across R_{T} gives a Logic 0 at the receiver output.

The output drive current is between $\pm 2.5 \mathrm{~mA}$ and $\pm 4.5 \mathrm{~mA}$ (typically $\pm 3.1 \mathrm{~mA}$), developing between $\pm 250 \mathrm{mV}$ and $\pm 450 \mathrm{mV}$ across a 100Ω termination resistor. The received voltage is centered around the receiver offset of 1.2 V . Therefore, the noninverting receiver input is typically $(1.2 \mathrm{~V}+[310 \mathrm{mV} / 2])=1.355 \mathrm{~V}$, and the inverting receiver input is $(1.2 \mathrm{~V}-[310 \mathrm{mV} / 2])=1.045 \mathrm{~V}$ for Logic 1 . For Logic 0 , the inverting and noninverting output voltages are reversed. Note that because the differential voltage reverses polarity, the peak-to-peak voltage swing across R_{T} is twice the differential voltage.
Current mode drivers offer considerable advantages over voltage mode drivers such as RS- 422 drivers. The operating current remains fairly constant with increased switching frequency, whereas that of voltage mode drivers increases exponentially in most cases. This is caused by the overlap as internal gates switch between high and low, which causes currents to flow from the device power supply to ground.

A current mode device simply reverses a constant current between its two outputs, with no significant overlap currents.

This is similar to emitter-coupled logic (ECL) and positive emitter-coupled logic (PECL), but without the high quiescent current of ECL and PECL.

ENABLE INPUTS

The active high and active low enable inputs deactivate all the current drivers when in the disabled state. This also powers down the device and reduces the current consumption from typically 20 mA to typically 2.2 mA . A truth table for the enable inputs is shown in Table 5.

Table 5. Enable Inputs Truth Table

EN	EN	Din	Dout+	Dout-
H	L or open	L	$\mathrm{I}_{\text {IINK }}$	Isource
H	L or open	H	Isource	$\mathrm{I}_{\text {SIIK }}$
Any other combination of EN and $\overline{\mathrm{EN}}$		X	Inactive	Inactive

APPLICATIONS INFORMATION

Figure 24 shows a typical application for point-to-point data transmission using the ADN4667 as the driver and the ADN4668 as the receiver.

Figure 24. Typical Application Circuit

ADN4667

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 25. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body
(R-16)
Dimensions shown in millimeters and (inches)

Figure 26. 16-Lead Thin Shrink Small Outline Package[TSSOP] (RU-16)
Dimensions shown in millimeters
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADN4667ARZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Standard Small Outline Package [SOIC_N]	R-16
ADN4667ARZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADN4667ARUZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADN4667ARUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part

[^0]: ${ }^{1}$ Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except $\mathrm{V}_{\text {OD, }}, \Delta \mathrm{V}_{\text {OD }}$, and $\Delta \mathrm{V}_{\text {Os }}$.
 ${ }^{2}$ The ADN4667 is a current mode device and functions within data sheet specifications only when a resistive load is applied to the driver outputs. Typical range is 90Ω to 110Ω.
 ${ }^{3}$ Output short-circuit current (los) is specified as magnitude only; minus sign indicates direction only.

